Data Sheet, DS2, Nov. 2000

SLICOF1-2/-2S/-2S2 Dual Channel Subscriber Line Interface Codec Filter PEB 3265 Version 1.3 PEB 3264/-2 Version 1.3

A B A B A B A B A B A B

Wired Communications

Never stop thinking.

Edition 2000-11-09

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 11/8/00. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Dual Channel Subscriber Line Interface Codec Filter PEB 3265 Version 1.3 PEB 3264/-2 Version 1.3

Wired Communications

Never stop thinking.

SLICOFI-2/-2S/-2S2 Preliminary				
Revision H	, istory:	2000-11-09	DS2	
Previous Ve	ersion:	Data Sheet DS1		
Page	Subjects (m	ajor changes since last revision)		
all	PEB 3264,	PEB 3264-2 and PEB 3265 versions cha	nged from 1.2 to 1.3	
Page 7	Pin Definitio changed.	ns: Description for pins IO1B, IO2B, IO1	A, IO2A and SELCLK	
Page 11	Chapter 3.1	"Functional Overview" completely overv	vorked.	
Page 18	Table 4 "Operating Modes for <i>SLICOFI-2x</i> and SLIC": modes and footnotes added.			
Page 22	Table 9 "SLIC-P Interface Code": footnote modified.Table 10 "SLIC-P Modes": modes added.			
Page 24	Chapter 5 "Signal Path and Test Loops": new pictures			
Page 31	Chapter 6.1.4 "Power Dissipation SLICOFI-2": max. limit values added.			
Page 32	Chapter 6.1.5 "Power Dissipation SLICOFI-2S/-2S2": max. limit values added.			
Page 34	Chapter 6.1.7 "Miscellaneous Characteristics": Comparator thresholds description changes		parator thresholds	
Page 41	Chapter 6.2	2.2 "Group Delay": description modified.		
Page 43	Chapter "In	put/Output Waveform for AC Tests" o	n Page 43 added.	
Page 45	 PCM interface timings "Single-Clocking Mode" on Page 45 and "Double-Clocking Mode" on Page 46: FSC hold time (t_{FSC_h}) renamed to FSC hold time 1 (t_{FSC_h1}), FSC hold time 2 (t_{FSC_h2}) added, formula of max. value for TCA/B delay time off (t_{dTCoff}) modified 		Page 45 (_{fFSC_h1}), value for TCA/B delay	
Page 49	IOM-2 interface timings "Single-Clocking Mode" on Page 49and "Double-Clocking Mode" on Page 50:FSC hold time (t_{FSC_h}) renamed to FSC hold time 1 (t_{FSC_h1}),FSC hold time 2 (t_{FSC_h2}) added, parameters and timing of pin DU modified			
Page 52	Chapter 8.1	"List of Abbreviations" updated.		

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com.

Table of Contents

Page

_	
1 1.1 1.2 1.3	Overview 2 Features SLICOFI-2 3 Features SLICOFI-2S/-2S2 4 Logic Symbol 5
2 2.1	Pin Descriptions 6 Pin Diagram 6
3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.4	Functional Description11Functional Overview11Basic Functions available for all SLICOFI-2x Codecs11Additional Functions available for the SLICOFI-2 Codec12Block Diagrams14DTMF Generation15DTMF Detection (SLICOFI-2 only)15Caller ID Generation (SLICOFI-2 only)17Line Echo Cancelling (LEC) (SLICOFI-2 only)17
4 4.1 4.2 4.3	Operating Modes for the DuSLIC Chip Set18SLICOFI-2S/-2S2 and SLIC-S/-S2 Interface20SLICOFI-2 and SLIC-E/-E2 Interface21SLICOFI-2 and SLIC-P Interface22
5 5.1 5.2	Signal Path and Test Loops24Test Loops SLICOFI-224
	Test Loops SLICOFI-2S/-2S2 26
6 6.1 6.1.2 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 6.2.1 6.2.2 6.3 6.4 6.4.1	Test Loops SLICOFI-2S/-2S226Electrical Characteristics29Electrical Characteristics PEB 3264/PEB 3264-2/PEB 326529Absolute Maximum Ratings29Power Up Sequence for Supply Voltages30Operating Range30Power Dissipation SLICOFI-231Power Dissipation SLICOFI-2S/-2S232Digital Interface33Miscellaneous Characteristics34AC Transmission SLICOFI-2/-2S/-2S235Gain Tracking (Receive or Transmit)40Group Delay41DC Characteristics42SLICOFI-2/-2S/-2S2 Timing Characteristics43Input/Output Waveform for AC Tests43

Table of Contents

Page

6.4.3.1 6.4.3.2 6.4.4 6.4.5 6.4.5.1 6.4.5.2	Single-Clocking Mode 45 Double-Clocking Mode 46 Microcontroller Interface Timing 48 IOM-2 Interface Timing 49 Single-Clocking Mode 49 Double-Clocking Mode 49 Single-Clocking Mode 49 Double-Clocking Mode 50
7	Package Outlines
8 8.1	Glossary52List of Abbreviations52
9	Index

List of Figures

Page

Figure 1	Logic Symbol SLICOFI-2/-2S/-2S2	. 5
Figure 2	Pin Configuration SLICOFI-2/-2S/-2S2 (top view)	. 6
Figure 3	Line Circuit Functions included in the SLICOFI-2S/-2S2	13
Figure 4	Line Circuit Functions included in the SLICOFI-2	13
Figure 5	Block Diagram SLICOFI-2/-2S/-2S2 (PEB 3265, PEB 3264/-2)	14
Figure 6	AC Test Loops SLICOFI-2	24
Figure 7	DC Test Loops SLICOFI-2	25
Figure 8	AC Test Loops SLICOFI-2S.	26
Figure 9	AC Test Loops SLICOFI-2S2	27
Figure 10	DC Test Loops SLICOFI-2S/-2S2	28
Figure 11	Hysteresis for Input Pins	34
Figure 12	Overload Compression A/D	39
Figure 13	Insertion Loss	39
Figure 14	Gain Tracking Receive	40
Figure 15	Gain Tracking Transmit	40
Figure 16	Group Delay Distortion Receive and Transmit.	41
Figure 17	Insertion Loss	42
Figure 18	Waveform for AC Tests	43
Figure 19	MCLK / FSC-Timing	44
Figure 20	PCM Interface Timing - Single-Clocking Mode	45
Figure 21	PCM Interface Timing – Double-Clocking Mode	46
Figure 22	Microcontroller Interface Timing.	48
Figure 23	IOM-2 Interface Timing – Single-Clocking Mode	49
Figure 24	IOM-2 Interface Timing – Double-Clocking Mode	50
Figure 25	PEB 3265, PEB 3264, PEB 3264-2 (SLICOFI-2x)	51

Preface

Synonyms

To simplify matters, the following synonyms are used:

- *SLICOFI-2x* Synonym used for all codec versions SLICOFI-2/-2S/-2S2
- SLIC: Synonym used for all SLIC versions SLIC-S, SLIC-S2, SLIC-E, SLIC-E2 and SLIC-P

Organization of this Document

This Data Sheet is divided into nine chapters. It is organized as follows:

- Chapter 1, Overview A general description of the product, a list of its key features.
- Chapter 2, Pin Descriptions
- Chapter 3, Functional Description The main functions are presented following a functional block diagram.
- Chapter 4, Operational Description A brief description of the three operating modes: power down, active and ringing (plus signal monitoring techniques).
- Chapter 5, Interfaces Connection information.
- Chapter 6, Electrical Characteristics Parameters, symbols and limit values.
- Chapter 7, Package Outlines Illustrations and dimensions of the package outlines.
- Chapter 8, Glossary List of abbreviations and description of symbols.
- Chapter 9, Index

Preliminary

Overview

1 Overview

The Subscriber Line Interface Circuit *SLICOFI-2x* is a highly flexible two channel codec solution for analog line circuits. The *SLICOFI-2x* is programmable via software and can be adapted to all different standards worldwide.

DuSLIC Architecture

The SLICOFI-2 (PEB 3265) and SLICOFI-2S/-2S2 (PEB 3264/-2) chips are part of the DuSLIC chip set and are designed for use with the SLIC-E/-E2/-P (PEB 4265/-2, PEB 4266) and SLIC-S/-S2 (PEB 4264/-2) devices. For an overview about available DuSLIC versions see the DuSLIC Chip Set Selection Guide.

The DuSLIC design splits the traditional SLIC functions to high- and low-voltage functions. The low-voltage functions are handled in the *SLICOFI-2x* device, the high-voltage functions are handled in the SLIC devices.

All *SLICOFI-2x* codec devices are manufactured in an advanced 0.35 µm 3.3 V CMOS process.

For further information see Chapter 3.1.

Dual Channel Subscriber Line Interface Codec Filter *SLICOFI-2x*

PEB 3265 PEB 3264 PEB 3264-2

CMOS

Version 1.3

1.1 Features SLICOFI-2¹⁾

- Fully programmable dual-channel codec
- Programmable battery feeding with capability for driving long loops
- Internal balanced/unbalanced ringing capability (up to 85 Vrms balanced / 50 Vrms unbalanced)
- External ringing support
- Ground/loop start signaling
- Polarity reversal
- On-hook transmission
- Programmable Teletax (TTX) generation
- Integrated DTMF generator
- Integrated DTMF decoder
- Integrated Caller ID (FSK) generator
- Integrated fax/modem detection (Universal Tone Detection UTD)
- Integrated Line Echo Cancellation unit (LEC)
- Optimized filter structure for modem transmission
- Message waiting lamp support (for PBX applications)
- Three-party conferencing (in PCM/μC mode)
- 8 and 16 kHz PCM Transmission
- IOM-2 or PCM/µC-interface selectable
- Power optimized architecture
- Power management capability (battery switching)
- Integrated test and diagnosis functions
- Specification in accordance with ITU-T Recommendation Q.552 for interface Z, ITU-T Recommendation G.712 and applicable LSSGR

¹⁾ Features are indicated for the DuSLIC chip set and are partially realized by the SLICOFI-2 codec.

Туре	Package
PEB 3265, PEB 3264, PEB 3264-2	P-MQFP-64-1

Overview

1.2 Features SLICOFI-2S/-2S2¹⁾

- Fully programmable dual-channel codec
- Programmable battery feed with capability for driving long loops
- Internal balanced ringing capability up to 45 Vrms
- External ringing support
- Ground/loop start signaling
- Polarity reversal
- On-hook transmission
- Programmable Teletax (TTX) generation (not available with SLICOFI-2S2)
- Integrated DTMF generator
- 8 and 16 kHz PCM Transmission
- IOM-2 or PCM/µC-interface selectable
- Power optimized architecture
- Power management capability (battery switching)

 Specification in accordance with ITU-T Recommendation Q.552 for interface Z, ITU-T Recommendation G.712 and applicable LSSGR

¹⁾ Features are indicated for the DuSLIC chip set and are partially realized by the SLICOFI-2S/-2S2 codec.

Preliminary

Overview

1.3 Logic Symbol

Preliminary

Pin Descriptions

2 Pin Descriptions

2.1 Pin Diagram

Figure 2 Pin Configuration SLICOFI-2/-2S/-2S2 (top view)

Preliminary

Pin Descriptions

Table 1 Pin Definitions and Functions SLICOFI-2/-2S/-2S2

Pin No.	Sym- bol	Input (I) Output (O)	Function	
1	C2B	0	Ternary logic output for controlling the SLIC operation mode (channel B)	
2	DCPB	0	Two-wire output voltage (DCP) (channel B)	
3	CDCPB	I/O	External capacitance for filtering (channel B)	
4	CDCNB	I/O	External capacitance for filtering (channel B)	
5	DCNB	0	Two-wire output voltage (DCN) (channel B)	
6	ACPB	0	Differential two-wire AC output voltage controlling the RING pin (channel B)	
7	ACNB	0	Differential two-wire AC output voltage controlling the TIP pin (channel B)	
8	VDDB	Power	+ 3.3 V analog supply voltage (channel B)	
9	GNDB	Power	Analog ground (channel B)	
10	IO1B	I/O	User-programmable I/O pin (channel B) with relay-driving capability. In external ringing mode IO1 is used to automatically control and drive the ring relay.	
11	IO2B	I/O	User-programmable I/O pin (channel B) with relay-driving capability. SLICOFI-2 and SLIC-P: connected to pin C3 of SLIC-P, when two supply voltages for voice transmission and internal ringing are used. ¹⁾	
12	IO3B	I/O	User-programmable I/O pin (channel B) with analog input functionality	
13	IO4B	I/O	User-programmable I/O pin (channel B) with analog input functionality	
14	TS0 DIN	1	$\frac{PCM}{IOM-2} = 0 \text{ (IOM-2 interface): Time slot selection pin 0} \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data in } \\$	
15	TS1 DCLK	1	$\frac{PCM}{IOM-2} = 0 \text{ (IOM-2 interface): Time slot selection pin 1} \\ \frac{PCM}{IOM-2} = 1 \text{ (}\mu\text{C interface): Data clock}$	
16	TS2 CS	1	$\begin{array}{l} PCM/\overline{IOM-2} = 0 \ (IOM-2 \ interface): \\ Time \ slot \ selection \ Pin \ 2 \\ PCM/\overline{IOM-2} = 1 \ (\mu C \ interface): \ Chip \ select, \ low \ active \end{array}$	
17	INT	0	PCM/ $\overline{\text{IOM-2}}$ = 0 (IOM-2 interface): not connected PCM/ $\overline{\text{IOM-2}}$ = 1 (µC interface): Interrupt pin, low active	

Pin Descriptions

Tab	le 1	Pin Definitio	ons and Functions SLICOFI-2/-2S/-2S2 (cont'd)		
Pin No.	Sym- bol	Input (I) Output (O)	Function		
18	DU	0	PCM/IOM-2 = 0 (IOM-2 interface):		
	DOUT	0	Data upstream, open drain PCM/IOM-2 = 1 (μ C interface): Data out, push/pull		
19	DCL PCLK	1	$\frac{PCM}{IOM-2} = 0 \text{ (IOM-2 interface): Data clock}$ $\frac{PCM}{IOM-2} = 1 \text{ (PCM interface): } 128 \text{ kHz to } 8192 \text{ kHz}$ $PCM \text{ clock}$		
20	DD DRB	1	$\frac{PCM}{IOM-2} = 0 \text{ (IOM-2 interface): Data downstream}$ $\frac{PCM}{IOM-2} = 1 \text{ (PCM interface): Receive data input for}$ $PCM \text{ highway B}$		
21	SEL24 DRA	1	PCM/IOM-2 =0 (IOM-2 interface): SEL24 = 0: DCL = 2048 kHz selected SEL24 = 1: DCL = 4096 kHz selected PCM/IOM-2 =1 (PCM-interface): Receive Data input for PCM-highway A		
22	MCLK	1	$PCM/\overline{IOM-2} = 0$ (IOM-2 interface): not connected $PCM/\overline{IOM-2} = 1$ (PCM interface): master clock when PCM/ μ C interface is used, clock rates are 512 kHz, 1536 kHz, 2048 kHz, 4096 kHz, 7168 kHz, 8192 kHz		
23	FSC	I	Frame synchronization clock for PCM/ μ C or IOM-2 interface, 8 kHz, identifies the beginning of the frame, individual time slots are referenced to this input signal.		
24	GNDD	Power	Digital ground		
25	VDDD	Power	+ 3.3 V digital supply voltage		
26	TCA	0	Transmit control output for PCM highway A, active low during transmission, open drain		
27	DXA	0	Transmit data output for PCM highway A (goes tristate when inactive)		
28	DXB	0	Transmit data output for PCM highway B (goes tristate when inactive)		
29	TCB	0	Transmit control output for PCM highway B, active low during transmission, open drain		
30	GNDPLL	Power	Digital ground PLL		
31	VDDPLL	Power	+ 3.3 V supply voltage PLL		

Pin Descriptions

Table 1Pin Definitions and Functions SLICOFI-2/-2S/-2S2 (cont'd)			
Pin No.	Sym- bol	Input (I) Output (O)	Function
32	PCM/ IOM-2	I	$PCM/\overline{IOM-2} = 1$: PCM/μ C interface selected $PCM/\overline{IOM-2} = 0$: IOM-2 interface selected
33	RSYNC	I	External ringing synchronization pin
34	RESET	I	Reset pin, low active
35	TEST	I	Testpin for production test, has to be connected to GNDD
36	IO4A	I/O	User-programmable I/O Pin (channel A) with analog input functionality
37	IO3A	I/O	User-programmable I/O Pin (channel A) with analog input functionality
38	IO2A	I/O	User-programmable I/O Pin (channel A) with relay-driving capability. SLICOFI-2 and SLIC-P: connected to pin C3 of SLIC-P, when two supply voltages for voice transmission and internal ringing are used. ¹⁾
39	IO1A	I/O	User-programmable I/O Pin (channel A) with relay-driving capability. In external ringing mode IO1 is used to automatically control and drive the ring relay.
40	GNDA	Power	Analog ground (channel A)
41	VDDA	Power	+ 3.3 V analog supply voltage (channel A)
42	ACNA	0	Differential two-wire AC output voltage controlling the TIP pin (channel A)
43	ACPA	0	Differential two-wire AC output voltage controlling the RING pin (channel A)
44	DCNA	0	Two-wire output voltage (DCN) (channel A)
45	CDCNA	I/O	External capacitance for filtering (channel A)
46	CDCPA	I/O	External capacitance for filtering (channel A)
47	DCPA	0	Two-wire output voltage (DCP) (channel A)
48	C2A	0	Ternary logic output for controlling the SLIC operation mode (channel A)
49	C1A	I/O	Ternary logic output, controlling the SLIC operation mode (channel A); indicating thermal overload of SLIC if a current of typically 150 μ A is drawn out
50	ILA	I	Longitudinal current input (channel A)
51	ITACA	I	Transversal current input (AC) (channel A)

Pin Descriptions

Table 1	Pin Definitions and Functions SLICOFI-2/-2S/-2S2 (cont'd)
---------	--	---------

Pin No.	Sym- bol	Input (I) Output (O)	Function	
52	ITA	I	Transversal current input (AC + DC) (channel A)	
53	VCMITA	I	Reference pin for trans./long. current sensing (channel A)	
54	VDDR	Power	+ 3.3 V analog supply voltage (bias)	
55	GNDR	Power	Analog ground (bias)	
56	VCMS	0	Reference voltage for differential two-wire interface, typical 1.5 V	
57	VCM	0	Reference voltage for input pins IT, IL, ITAC	
58	CREF	I/O	An external capacitor of 68 nF has to be connected to GNDR	
59	SELCLK	I	Master clock select. Should be set to GND (internal master clock generation). For test purposes, external master clock generation can be selected (SELCLK = 1). In this case a clock of nominal 32.768 Mhz with a jitter time of less than 1 ns has to be applied to the MCLK pin.	
60	VCMITB	1	Reference pin for transversal/longitudinal current sensing (channel B)	
61	ITB	I	Transversal current input (AC + DC) (channel B)	
62	ITACB	I	Transversal current input (AC) (channel B)	
63	ILB	I	Longitudinal current input (channel B)	
64	C1B	I/O	Ternary logic output, controlling the SLIC operation mode (channel B); indicating thermal overload of SLIC if a current of typically 150 μ A is drawn out	

 If SLIC-P is selected, IO2 cannot be controlled by the user, but is utilized by the SLICOFI-2 to control the C3 pin of SLIC-P.

Functional Description

3 Functional Description

3.1 Functional Overview

3.1.1 Basic Functions available for all *SLICOFI-2x* Codecs

The functions described in this chapter are integrated in all DuSLIC chip sets (see **Figure 3** for SLICOFI-2S/-2S2 and **Figure 4** for SLICOFI-2).

All BORSCHT functions are integrated:

- Battery feed
- Overvoltage protection (realized by the robust high-voltage SLIC technology and additional circuitry)
- Ringing¹⁾
- Signaling (supervision)
- Coding
- Hybrid for 2/4-wire conversion
- Testing

An important feature of the DuSLIC design is the fact that all the SLIC and codec functions are programmable via the IOM-2 or PCM/ μ C-interface of the dual channel *SLICOFI-2x* device:

- DC (battery) feed characteristics
- AC impedance matching
- Transmit gain
- Receive gain
- Hybrid balance
- Frequency response in transmit and receive direction
- Ring frequency and amplitude¹⁾
- Hook thresholds
- TTX modes²⁾

Because signal processing within the *SLICOFI-2x* is completely digital, it is possible to adapt to the requirements listed above by simply updating the coefficients that control DSP processing of all data. This means, for example, that changing impedance matching or hybrid balance requires no hardware modifications. A single hardware is now capable of meeting the requirements for different markets. The digital nature of the filters and gain stages also assures high reliability, no drifts (over temperature or time) and minimal variations between different lines.

¹⁾ With SLICOFI-2S2 only external ringing is supported

²⁾ Not available with SLICOFI-2S2 codec

Functional Description

The characteristics for the two voice channels within *SLICOFI-2x* can be programmed independently of each other. The DuSLICOS software is provided to automate calculation of coefficients to match different requirements. DuSLICOS also verifies the calculated coefficients.

3.1.2 Additional Functions available for the SLICOFI-2 Codec

The following line circuit functions are integrated only in the SLICOFI-2 (see Figure 4):

• Teletax metering

For pulse metering, a 12/16 kHz sinusoidal metering burst has to be transmitted. The DuSLIC chip set generates the metering signal internally and has an integrated notch filter.

• DTMF

DuSLIC has an integrated DTMF generator comprising two tone generators and a DTMF decoder. The decoder is able to monitor the transmit or receive path for valid tone pairs and outputs the corresponding digital code for each DTMF tone pair.

• Caller ID Frequency Shift Keying (FSK) Modulator

DuSLIC has an integrated FSK modulator capable of sending Caller ID information. The Caller ID modulator complies with all requirements of ITU-T recommendation V.23 and Bell 202.

• LEC (Line Echo Cancellation)

DuSLIC contains an adaptive line echo cancellation unit for the cancellation of near end echos (up to 8 ms cancelable echo delay time).

• UTD (Universal Tone Detection)

DuSLIC has an integrated Universal Tone Detection unit to detect special tones in the receive or transmit path (e.g. fax or modem tones).

Preliminary

Functional Description

Figure 3 Line Circuit Functions included in the SLICOFI-2S/-2S2

Figure 4 Line Circuit Functions included in the SLICOFI-2

Functional Description

3.2 Block Diagrams

Figure 5 shows the internal block structure of all *SLICOFI-2x* codec versions available. The Enhanced Digital Signal Processor (EDSP) realizing the add-on functions¹⁾ is only integrated in the SLICOFI-2 (PEB 3265) device.

Figure 5 Block Diagram SLICOFI-2/-2S/-2S2 (PEB 3265, PEB 3264/-2)

¹⁾ The add-on functions are DTMF detection, Caller ID generation, Message Waiting lamp support, Three-party Conferencing, Universal Tone Detection (UTD), Line Echo Cancellation (LEC) and Sleep Mode.

Preliminary

Functional Description

3.2.1 DTMF Generation

The *SLICOFI-2x* offers programmable DTMF generation for both channels by using the internal tone generators.

3.2.2 DTMF Detection (SLICOFI-2 only)

Both channels (A and B) of the SLICOFI-2 device have a powerful built-in DTMF decoder that will meet most national requirements. The receiver algorithm performance meets the quality criteria for central office/exchange applications. It complies among others with the requirements of ITU-T Q.24, Bellcore GR-30-CORE (TR-NWT-000506) and Deutsche Telekom network (BAPT 223 ZV 5, Approval Specification of the Federal Office for Post and Telecommunications, Germany).

The performance of the algorithm can be adapted according to the needs of the application via the digital interface (detection level, twist, bandwidth and center frequency of the notch filter).

 Table 2 shows the performance characteristics of the DTMF decoder algorithm:

	Characteristic	Value	Notes
1	Valid input signal detection level	- 48 to 0 dBm0	Programmable
2	Input signal rejection level	 – 5 dB of valid signal detection level 	-
3	Positive twist accept	< 8 dB	Programmable
4	Negative twist accept	< 8 dB	Programmable
5	Frequency deviation accept	< ± (1.5% + 4 Hz) and < ± 1.8%	Related to center frequency
6	Frequency deviation reject	> ± 3%	Related to center frequency
7	DTMF noise tolerance (could be the same as 14)	– 12 dB	dB referenced to lowest amplitude tone
8	Minimum tone accept duration	40 ms	-
9	Maximum tone reject duration	25 ms	-
10	Signaling velocity	≥ 93 ms/digit	-
11	Minimum inter-digit pause duration	40 ms	-
12	Maximum tone drop-out duration	20 ms	-

Table 2 Performance Characteristics of the DTMF Decoder Algorithm

Functional Description

Table 2 Performance Characteristics of the DTMF Decoder Algorithm (cont'd)

	Characteristic	Value	Notes
13	Interference rejection 30 Hz to 480 Hz for valid DTMF recognition	Level in frequency range 30 Hz … 480 Hz ≤ level of DTMF frequency + 22 dB	dB referenced to lowest amplitude tone
14	Gaussian noise influence Signal level – 22 dBm0, SNR = 23 dB	Error rate better than 1 in 10000	_
15	Pulse noise influence Impulse noise tape 201	Error rate better than 14 in 10000	-

In the event of pauses < 20 ms:

- If the pause is followed by a tone pair with the same frequencies as before, this is interpreted as drop-out.
- If the pause is followed by a tone pair with different frequencies and if all other conditions are valid, this is interpreted as two different numbers.

DTMF decoders can be switched on or off individually to reduce power consumption. In normal operation, the decoder monitors the Tip and Ring wires via the ITAC pins (transmit path). Alternatively the decoder can be switched also in the receive path. On detecting a valid DTMF tone pair, SLICOFI-2 generates an interrupt via the appropriate INT pin and indicates a change of status. The DTMF code information is provided by a register which is read via the digital interface.

The DTMF decoder also has excellent speech-rejection capabilities and complies with Bellcore TR-TSY-000763. The algorithm has been fully tested with the speech sample sequences in the Series-1 Digit Simulation Test Tapes for DTMF decoders from Bellcore.

Functional Description

3.2.3 Caller ID Generation (SLICOFI-2 only)

The SLICOFI-2 contains a FSK generation unit for sending Caller ID information.

SLICOFI-2 FSK Generation

Different countries use different standards to send Caller ID information. The SLICOFI-2 chip is compatible with the widely used standards Bellcore GR-30-CORE, British Telecom (BT) SIN227, SIN242 or the UK Cable Communications Association (CCA) specification TW/P&E/312. Continuous phase binary frequency shift keying (FSK) modulation is used for coding which is compatible with BELL 202 (see Table 3) and ITU-T V.23, the most common standards. The SLICOFI-2 can be easily adapted to these requirements by programming via the microcontroller interface. Coefficient sets are provided for the most common standards.

Characteristic	ITU-T V.23	Bell 202				
Mark (Logic 1)	1300 ± 3 Hz	1200 ± 3 Hz				
Space (Logic 0)	2100 ± 3 Hz	2200 ± 3 Hz				
Modulation		FSK				
Transmission rate		1200 ± 6 baud				
Data format	Serial	Serial binary asynchronous				

Table 3 FSK Modulation Characteristics

3.2.4 Line Echo Cancelling (LEC) (SLICOFI-2 only)

The SLICOFI-2 line echo canceller is compatible with applicable standards ITU-T G.165 and G.168. An echo cancellation delay time of up to 8 ms can be programmed (for restrictions see chapter "MIPS requirements for EDSP Capabilities" in the DuSLIC Data Sheet).

Operating Modes for the DuSLIC Chip Set

4

Table 4Operating Modes for SLICOFI-2x and SLICS

Operating Modes for the DuSLIC Chip Set

SLICOFI-2x Mode	SLIC Type			CIDD/ CIOP ¹⁾			Additional Bits used (Note ²⁾)	
	SLIC-S/ SLIC-S2	SLIC-E/ SLIC-E2	SLIC-P	M2	M1	MO		
Sleep (SL)	_	PDRH	PDRH	1	1	1	SLEEP-EN = 1	
			PDRR	1	1	1	SLEEP-EN = 1, ACTR = 1	
Power Down	PDRH	PDRH	PDRH	1	1	1	SLEEP-EN = 0	
Resistive (PDR)			PDRR	1	1	1	SLEEP-EN = 0, ACTR = 1	
Power Down High Impedance (PDH)	PDH	PDH	PDH	0	0	0	_	
Active High (ACTH)	ACTH	ACTH	ACTH	0	1	0	_	
Active Low (ACTL)	ACTL	ACTL	ACTL	0	1	0	ACTL = 1	
Active Ring (ACTR)	ACTR	ACTR	ACTR	0	1	0	ACTR = 1	
Ringing (Ring)	ACTR ³⁾	ACTR	ACTR	1	0	1	-	
	_	_	ROT	1	0	1	HIT = 1	
	_	_	ROR	1	0	1	HIR = 1	
Active with HIT	HIT	HIT	ніт	0 0	1 1	0 0	HIT = 1 HIT = 1, ACTR = 0	
Active with HIR	HIR	HIR	HIR	0 0	1 1	0 0	HIR = 0 HIR = 0, ACTR = 0	
Active with Ring to Ground			ROT	0	1	0	HIT = 1, ACTR = 1	
Active with Tip to Ground			ROR	0	1	0	HIR = 1, ACTR = 1	
HIRT	_	HIRT	HIRT	0	1	0	HIR = 1, HIT = 1	
Active with Metering	ACTx ³⁾ 4)	ACTx ⁴⁾	ACTx ⁴⁾	1	1	0	TTX-DIS to select Reverse Polarity or TTX Metering	

Operating Modes for the DuSLIC Chip Set

Table 4 Operating Modes for SLICOFI-2x and SLICS (cont'd)

SLICOFI-2x Mode	SLIC Type		CIDD/ CIOP ¹⁾)/ 1)	Additional Bits used (Note ²⁾)	
	SLIC-S/ SLIC-S2	SLIC-E/ SLIC-E2	SLIC-P	M2	M1	MO	
Ground Start	HIT	HIT	НІТ	1 1	0 0	0 0	– ACTR = 0
Ring Pause	ACTR ³⁾	ACTR	ACTR ROR ROT	0	0	1	HIR = 1 HIT = 1

 CIDD = Data Downstream Command/Indication Channel Byte (IOM-2 interface) CIOP = Command/Indication Operation For *SLICOFI-2x* command structure and programming see DuSLC Data Sheet chapter 6.

²⁾ if not otherwise stated in the table, the bits ACTL, ACTR, HIT, HIR have to be set to 0.

³⁾ only for SLIC-S

⁴⁾ ACTx means ACTH, ACTL or ACTR.

For a functional description of the operating modes see the DuSLIC Data Sheet.

Operating Modes for the DuSLIC Chip Set

4.1 SLICOFI-2S/-2S2 and SLIC-S/-S2 Interface

The SLIC-S/-S2 (PEB 4264/-2) operates in the following modes controlled by a ternary logic signal at the C1 and C2 input:

Table 5 SLIC-S/-S2 Interface Code

		C2 (Pin 17)			
		L	Μ	Н	
C1 (Pin 18)	L ¹⁾	PDH	PDH PDRHL		
	Μ	ACTL	ACTH	ACTR	
	Н	unused	HIT	HIR	

¹⁾ no "Overtemp" signaling possible via pin C1 if C1 is low

Table 6SLIC-S/-S2 Modes

SLIC Mode	Mode Description	Used SLIC-S/-S2 Battery Voltage
PDH	Power Down High Impedance	V _{BATH}
PDRHL	Power Down Load Resistive on $V_{\rm BATH}$ and $V_{\rm BGND}$	V _{BATH}
PDRH	Power Down Resistive on $V_{\rm BATH}$ and $V_{\rm BGND}$	V _{BATH}
ACTH	Active with V_{BATH} and V_{BGND}	V _{BATH}
ACTR	Active with V_{BATH} and V_{HR}	V _{BATH} , V _{HR}
ACTL	Active with V_{BATL} and V_{BGND}	V _{BATL}
ніт	High Impedance on Tip	V _{BATH} , V _{HR}
HIR	High Impedance on Ring	V _{BATH} , V _{HR}

For the usage of the SLIC-S/-S2 modes see the DuSLIC Data Sheet.

Operating Modes for the DuSLIC Chip Set

4.2 SLICOFI-2 and SLIC-E/-E2 Interface

The SLIC-E/-E2 (PEB 4265/-2) operates in the following modes controlled by a ternary logic signal at the C1 and C2 input:

Table 7 SLIC-E/-E2 Interface Code

			C2				
		L	Μ	Н			
C1	L ¹⁾	PDH	PDRHL	PDRH			
	Μ	ACTL	ACTH	ACTR			
	Н	HIRT	HIT	HIR			

¹⁾ no "Overtemp" signaling possible via pin C1 if C1 is low.

Table 8 SLIC-E/-E2 Modes

SLIC Mode	Mode Description	Used SLIC-E/-E2 Battery Voltage
PDH	Power Down High Impedance	V _{BATH}
PDRHL	Power Down Load Resistive on $V_{\rm BATH}$ and $V_{\rm BGND}$	V _{BATH}
PDRH	Power Down Resistive on $V_{\rm BATH}$ and $V_{\rm BGND}$	V _{BATH}
ACTH	Active with V_{BATH} and V_{BGND}	V _{BATH}
ACTR	Active with V_{BATH} and V_{HR}	V _{BATH} , V _{HR}
ACTL	Active with V_{BATL} and V_{BGND}	V _{BATL}
HIRT	High Impedance on Ring and Tip	V _{BATH} , V _{HR}
ніт	High Impedance on Tip	V _{BATH} , V _{HR}
HIR	High Impedance on Ring	V _{BATH} , V _{HR}

For the usage of the SLIC-E/-E2 modes see the DuSLIC Data Sheet.

Operating Modes for the DuSLIC Chip Set

4.3 SLICOFI-2 and SLIC-P Interface

The SLIC-P (PEB 4266) operates in the following modes controlled by a ternary logic signal at the C1, C2 inputs and a binary logic signal at C3 input

Table 9 **SLIC-P Interface Code**

			C2	
		L	Μ	Н
	L ¹⁾	PDH	PDRR	PDRRL
			PDRHL	PDRH
C1	Μ	ACTL	ACTH	ACTR
	Н	HIRT	HIT	HIR
			ROT	ROR
				$C3 = L^{2}$
				$C3 = H^{2}$

¹⁾ no "Overtemp" signaling possible via pin C1 if C1 is low.

²⁾ C3 pin of SLIC-P is typically connected to IO2 pin of SLICOFI-2. For extremely power-sensitive applications using external ringing the C3 pin can be connected to GND.

Operating Modes for SLIC-P with Two Battery Voltages (V_{BATH} , V_{BATL}) for Voice and an Additional Voltage (V_{BATR}) for Ringing:

The I/O2 pin is used for the C3 pin of SLIC-P.

	SLIC-P WOdes	
SLIC Mode	Mode Description	Used SLIC-P Battery Voltage
PDH	Power Down High Impedance	V _{BATR}
PDRH	Power Down Resistive High	V _{BATH}
PDRHL	Power Down Load Resistive High Load	V _{BATH}
PDRR	Power Down Resistive Ring	V _{BATR}
PDRRL	Power Down Load Resistive Ring Load	V _{BATR}
ACTL	Active Low	V _{BATL}
ACTH	Active High	V _{BATH}
ACTR	Active Ring	V _{BATR}
HIRT	High Impedance on RING and TIP	V _{BATR}

Tabla 10 SI IC-P Modos

. .

Operating Modes for the DuSLIC Chip Set

Table 10 SLIC-P Modes (contrd)					
SLIC Mode	Mode Description	Used SLIC-P Battery Voltage			
HIT	High Impedance on TIP	V _{BATR}			
HIR	High Impedance on RING	V _{BATR}			
ROR	Ring on RING	V _{BATR}			
ROT	Ring on TIP	V _{BATR}			

For the usage of the SLIC-P modes see the DuSLIC Data Sheet.

Operating Modes for SLIC-P with Three Battery Voltages (V_{BATH} , V_{BATL} , V_{BATR}) for voice and External Ringing

The C3 pin of SLIC-P has to be set to GND. The I/O2 pin is free usable.

SLIC Mode	Mode Description	Used SLIC Battery Voltage			
PDH	Power Down High Impedance	V _{BATR}			
PDRR	Power Down Resistive on $V_{\rm BATR}$ and $V_{\rm BGND}$	V _{BATR}			
PDRRL	Power Down Load Resistive on $V_{\rm BATR}$ and $V_{\rm BGND}$	V _{BATR}			
ACTH	Active with V_{BATH} and V_{BGND}	V _{BATH}			
ACTR	Active with V_{BATR} and V_{BGND}	V _{BATR}			
ACTL	Active with V_{BATL} and V_{BGND}	V _{BATL}			
HIRT	High Impedance on Ring and Tip	V _{BATR}			
ніт	High Impedance on Tip	V _{BATR}			
HIR	High Impedance on Ring	V _{BATR}			

Table 11 SLIC-P Modes

For the usage of the SLIC-P modes see the DuSLIC Data Sheet.

Signal Path and Test Loops

5 Signal Path and Test Loops

The following figures show the main AC and DC signal path and the integrated analog and digital loops of SLICOFI-2, SLICOFI-2S and SLICOFI-2S2.

Please note the interconnections between the AC and DC pictures of the respective chip set. For further information on the shown registers and bits/switches please see the DuSLIC Data Sheet.

5.1 Test Loops SLICOFI-2

Figure 6 AC Test Loops SLICOFI-2

Preliminary

Signal Path and Test Loops

Figure 7 DC Test Loops SLICOFI-2

Signal Path and Test Loops

5.2 Test Loops SLICOFI-2S/-2S2

The AC test loops for SLICOFI-2S (**Figure 8**) and SLICOFI-2S2 (**Figure 9**) are different since Teletax (TTX) is not available with SLICOFI-2S2. The DC test loops are identical.

Figure 8 AC Test Loops SLICOFI-2S

Preliminary

Signal Path and Test Loops

Figure 9

AC Test Loops SLICOFI-2S2

Signal Path and Test Loops

Figure 10 DC Test Loops SLICOFI-2S/-2S2

Electrical Characteristics

6 Electrical Characteristics

6.1 Electrical Characteristics PEB 3264/PEB 3264-2/PEB 3265

6.1.1 Absolute Maximum Ratings

Parameter ¹⁾	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Supply pins (VDDi) referred to the corresponding ground pin (GNDi)	-	- 0.3	4.6	V	_
Ground pins (GNDi) referred to any other ground pin (GNDj)	-	- 0.3	0.3	V	_
Supply pins (VDDi) referred to any other supply pin (VDDj)	_	- 0.3	0.3	V	_
Analog input and output pins	_	- 0.3	3.6	V	$V_{\text{DDA}} = 3.3 \text{ V},$ $V_{\text{GNDA/B}} = 0 \text{ V}$
Digital input and output pins	_	- 0.3	5.5	V	V_{DDD} = 3.3 V, V_{GNDD} = 0 V
DC input and output current at any input or output pin (free from latch-up)	_	_	100	mA	_
Storage temperature	T _{STG}	- 65	125	°C	-
Ambient temperature under bias	T _A	- 40	85	°C	-
Power dissipation	PD	-	1	W	-
ESD voltage	-	_	2	kV	Human body model ²⁾
ESD voltage, all pins	-	_	1	kV	SDM (Socketed Device Model) ³⁾

¹⁾ i, j = A, B, D, R, PLL

²⁾ MIL STD 883D, method 3015.7 and ESD Assn. standard S5.1-1993.

³⁾ EOS/ESD Assn. Standard DS5.3-1993.

Electrical Characteristics

Note: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Functional operation under these conditions is not guaranteed. Exposure to conditions beyond those indicated in the recommended operational conditions of this specification may affect device reliability.

6.1.2 Power Up Sequence for Supply Voltages

The power up of VDDA, VDDB, VDDR, VDDD and VDDPLL should be performed simultaneously. No voltage should be supplied to any input or output pin before the VDD voltages are applied.

6.1.3 Operating Range

 $V_{\text{GNDD}} = V_{\text{GNDPLL}} = V_{\text{GNDR}} = V_{\text{GNDA/B}} = 0 \text{ V}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Supply pins (VDDi) referred to the corresponding ground pin (GNDi) (I = A, B, D, R, PLL)		3.135	3.3	3.465	V	
Analog input pins referred to the ground pin (GNDj) (j = A, B) ITj, ILj, ITACj, VCMITj		0	_	3.3	V	$V_{\rm DDj}$ = 3.3 V $V_{\rm GNDj}$ = 0 V
Analog output pins referred to the ground pin (GNDj) (i = A, B)						V_{DDj} = 3.3 V V_{GNDj} = 0 V
ACPj, DCPj, ACNj, DCNj,		0.3	_	2.7	V	
VCMS, VCM		1.3	_	1.7	V	
C1, C2		0	-	3.3	V	
Analog pins for passive devices to ground pin (GNDj) (j = A, B)						$V_{\text{DDj}} = 3.3 \text{ V}$ $V_{\text{GNDj}} = 0 \text{ V}$
CDCPj, CDCNj		0	_	3.3	V	
CREF		1.3	-	1.7	V	
Digital input and output pins		0	-	5	V	
Ambient temperature	T _A	- 40	-	+ 85	°C	

Electrical Characteristics

6.1.4 Power Dissipation SLICOFI-2

 $T_A = -40$ °C to 85 °C, unless otherwise stated. $V_{DDD} = V_{DDA} = V_{DDB} = V_{DDR} = V_{DDPLL} = 3.3 \text{ V} \pm 5 \%;$ $V_{GNDA} = V_{GNDB} = V_{GNDR} = V_{GNDD} = V_{GNDPLL} = 0 \text{ V}$

Parameter	Symbol	Lin	nit Val	ues	Unit	Test Condition
		min.	typ.	max.		
$V_{\rm DD}$ supply current ¹⁾						
Sleep both channels	I _{DDSleep}	_	5	7	mA	(MCLK, PCLK = 2 MHz)
Power Down both channels	I _{DDPDown}	_	24	30	mA	_
Active one channel	I _{DDAct1}	_	39	46	mA	without EDSP ²⁾
		-	43	50	mA	with 8 MIPS
			17	FF	A	(DTMF detection)
		-	47	55	mA	
Active both channels	I _{DDAct2}	-	55	70	mA	without EDSP
		-	70	90	mA	with 32 MIPS
Power dissipation ¹⁾						
Sleep both channels	P _{DDSleep}	_	17	25	mW	(MCLK, PCLK = 2 MHz)
Power Down both channels	P _{DDPDown}	_	79	104	mW	_
Active one channel	P _{DDAct1}	_	129	160	mW	without EDSP
	DDNOT	_	142	174	mW	with 8 MIPS
						(DTMF detection)
		-	155	191	mW	with 16 MIPS
Active both channels	P _{DDAct2}	-	182	243	mW	without EDSP
			231	315	mW	with 32 MIPS

¹⁾ Power dissipation and supply currents are target values

²⁾ EDSP features are DTMF detection, Caller ID generation and Universal Tone Detection (UTD).

Electrical Characteristics

6.1.5 Power Dissipation SLICOFI-2S/-2S2

 $T_A = -40$ °C to 85 °C, unless otherwise stated. $V_{DDD} = V_{DDA} = V_{DDB} = V_{DDR} = V_{DDPLL} = 3.3 \text{ V} \pm 5 \%;$ $V_{GNDA} = V_{GNDB} = V_{GNDR} = V_{GNDD} = V_{GNDPLL} = 0 \text{ V}$

Parameter	Symbol	Lin	Limit Values			Test Condition	
		min.	typ.	max.			
$V_{\rm DD}$ supply current ¹⁾							
Power Down both channels	I _{DDPDown}	_	24	30	mA	_	
Active one channel	I _{DDAct1}	_	39	46	mA	-	
Active both channels	I _{DDAct2}	_	55	70	mA	-	
Power dissipation ¹⁾							
Power Down both channels	P _{DDPDown}	_	79	104	mW	_	
Active one channel	P _{DDAct1}	_	129	160	mW	-	
Active both channels	P _{DDAct2}	_	182	243	mW	_	

¹⁾ Power dissipation and supply currents are target values

Electrical Characteristics

6.1.6 Digital Interface

 $T_{\rm A}$ = - 40 to + 85 °C, unless otherwise stated.

 $V_{\text{DD}} = V_{\text{DDD}} = V_{\text{DDA/B}} = 3.3 \text{ V} \pm 5\%; V_{\text{GNDD}} = V_{\text{GNDA/B}} = 0 \text{ V}$

Parameter	Symbol	L	imit Val	ues	Unit	Test Condition
		min.	typ.	max.		
For all input pins (including IO pins):						
Low-input posgoing	V_{T+}	-	1.70	1.82	V	see Figure 11
High-input neggoing	V_{T}	1.13	1.20	—	V	see Figure 11
Input hysteresis	V_{H}	0.48	0.5	0.56	V	$V_{H} = V_{T+} - V_{T-}$
Spike rejection for reset	t _{rej}	1	-	4	μs	-
For all output pins except DU, DXA, DXB, IO1, IO2 (including IO pins):						
Low-output voltage	V _{OL}	-	0.35	0.4	V	$I_{\rm O} = -3.6 {\rm mA}$
High-output voltage	V _{OH}	2.7	3.0	—	V	I _O = 3.3 mA
for pins DU, DXA, DXB						
Low-output voltage	VOLDU	-	0.35	0.4	V	$I_{\rm O} = -6 \text{ mA}$
High-output voltage	V_{OHDU}	2.7	3.0	_	V	I _O = 5.3 mA
for pins IO1, IO2						
Low-output voltage	V _{OLDU}	-	0.35	0.4	V	I _O = - 50 mA (SLICOFI-2)
	V _{OLDU}	-	0.35	0.4	V	I _O = - 30 mA (SLICOFI-2S/-2S2)
High-output voltage	V_{OHDU}	2.7	3.0	-	V	I _O = 3.3 mA

Preliminary

Electrical Characteristics

Figure 11 Hysteresis for Input Pins

6.1.7 Miscellaneous Characteristics

 $T_A = -40$ °C to 85 °C, unless otherwise stated.

Parameter	Symbol	Limit Values			Unit	Test	
		min.	typ.	max.		Condition	

Leakage

all digital input and	IL	- 3	_	3	μA	_
input/output pins						
all analog input pins						

Comparator Thresholds

Off Hook comparator						$V_{\rm DD}$ = 3.3 V
threshold	V _{THRESH}	_	V _{CM} – 0.275	_	V	
GNDkey comparator						
positive threshold	$V_{THRESH+}$	_	$V_{\rm CM}$ + 0.275	_	V	
negative threshold	V _{THRESH-}	_	V _{CM} – 0.275	_	V	
threshold hysteresis	V _{THR-hyst.}	_	0.045	_	V	
Overtemperature comparator	I _{Overtemp}	10	_	130	μA	

Electrical Characteristics

6.2 AC Transmission SLICOFI-2/-2S/-2S2

The specification is based on the subscriber linecard requirements. The proper adjustment of the programmable filters (transhybrid balancing, impedance matching, frequency-response correction) requires the consideration of the complete analog environment of the *SLICOFI-2x* device.

Functionality and performance is guaranteed for $T_A = 0$ to 70 °C by production testing. Extented temperature range operation at – 40 °C < T_A < 85 °C is guaranteed by design, characterization and periodically sampling and testing production devices at the temperature extremes.

Test Conditions

 $T_A = -40$ °C to 85 °C, unless otherwise stated.

 $V_{\text{DDD}} = V_{\text{DDA}} = V_{\text{DDB}} = V_{\text{DDR}} = V_{\text{DDPLL}} = 3.3 \text{ V} \pm 5 \%;$

 $V_{\text{GNDA}} = V_{\text{GNDB}} = V_{\text{GNDR}} = V_{\text{GNDD}} = V_{\text{GNDPLL}} = 0 \text{ V}$

Register BCR4: TH-DIS = 1, IM-DIS = 1, AX-DIS = 1, AR-DIS = 1

Register LMCR2: TEST-EN = 1

Register TSTR4: OPIM-AN = 1, OPIM-4M = 1

If not otherwise stated, the default settings are used.

The 0 dBm0 definitions for receive and transmit are:

A 0 dBm0 AC signal in transmit direction is equivalent to 0.5911 Vrms measured at pins ITACi/VCMITi (i = A, B).

A 0 dBm0 AC signal in receive direction is equivalent to 0.5911 Vrms measured at pins ITACi/VCMITi (i = A, B).

Table 12AC Transmission

Parameter	Symbol	Conditions	L	Limit Values			
			min.	typ.	max.		

Insertion Loss

A-D (see Figure 13)	PCM _{OUT}	V _G = - 11.88 dBm0 f = 1015.625 Hz	- 0.2	0	+ 0.2	dBm0
D-A (see Figure 13)	V _{AC}	PCM _{in} = 0 dBm0 f = 1015.625 Hz	- 2.668	- 2.868	- 3.068	dBm0

Electrical Characteristics

Table 12 AC T	ransmission (cont'd)
---------------	----------------------

Parameter	Symbol	Conditions	Li	imit Valu	es	Unit
			min.	typ.	max.	

Frequency Response

Receive loss Frequency variation	G _{RAF}	Reference frequency 7 H _{FRR} = 1	Reference frequency 1014 Hz, signal level 0 dBm0, H _{FRR} = 1						
	I	<i>f</i> = 300 Hz	- 0.17	0.03	0.23	dB			
		<i>f</i> = 2400 Hz	- 0.08	0.12	0.32	dB			
		<i>f</i> = 3000 Hz	- 0.04	0.16	0.36	dB			
Transmit loss Frequency variation	G _{XAF}	Reference frequency 7 H _{FRX} = 1	1014 Hz,	signal lev	vel 0 dBm	ı0,			
	ŀ	<i>f</i> = 300 Hz	- 0.16	0.04	0.24	dB			
		<i>f</i> = 2400 Hz	- 0.15	0.05	0.25	dB			
		<i>f</i> = 3000 Hz	- 0.14	0.06	0.26	dB			

Gain Tracking (see Figure 14 and Figure 15)

Transmit gain Signal level	G _{XAL}	G_{XAL} Sinusoidal test method f = 1014 Hz, reference level 0 dBm0					
variation		$VF_XI = -55$ to - 50 dBm0	- 1.4	-	1.4	dB	
		$VF_XI = -50$ to - 40 dBm0	- 0.5	_	0.5	dB	
		$VF_XI = -40$ to + 3 dBm0	- 0.25	-	0.25	dB	
Receive gain Signal level	G _{RAL}	Sinusoidal test method $f = 1014$ Hz, reference level 0 dBm0					
variation		D _R 0 = - 55 to - 50 dBm0	- 1.4	-	1.4	dB	
		$D_R 0 = -50 \text{ to}$ - 40 dBm0	- 0.5	_	0.5	dB	
		$D_R 0 = -40 \text{ to}$ + 3 dBm0	- 0.25	_	0.25	dB	

Electrical Characteristics

Parameter	Symbol	Conditions	Limit Values			Unit
			min.	typ.	max.	

Group Delay (see Figure 16)

Transmit delay, absolute	D _{XA}	<i>f</i> = 500 - 2800 Hz	400	490	585	μs
Receive delay, absolute	D _{RA}	<i>f</i> = 500 - 2800 Hz	290	380	475	μs
Group delay distortion, Receive	D _{XR}					
		<i>f</i> = 500 - 600 Hz	-	_	300	μs
relative to 1500		<i>f</i> = 600 - 1000 Hz	_	_	150	μs
Hz, (see Figure 16)		<i>f</i> = 1000 - 2600 Hz	_	_	100	μs
		<i>f</i> = 2600 - 2800 Hz	_	_	150	μs
		<i>f</i> = 2800 - 3000 Hz	-	_	300	μs

Overload compression A/D (see Figure 12)

Total Harmonic Distortion

Transmit	THD4	– 7 dBm0, 300 - 3400 Hz	_	- 50	- 44	dB
Receive	THD2	– 7 dBm0, 300 - 3400 Hz	_	- 50	- 44	dB

Idle Channel Noise

at ACN, ACP (receive) A-law	N _{RP}	Psophometric	-	- 103	- 92	dBmp
PCM side (transmit) A-Law	N _{TP}	Psophometric	-	- 84	- 75	dBmp

Electrical Characteristics

Table 12	AC Transmission	(cont'd)
----------	-----------------	----------

Parameter	Symbol	Conditions	L	Limit Values		
			min.	typ.	max.	

Distortion (Sinusoidal Test Method)

Signal to total distortion Transmit	STD _X	f = 1014 Hz (C messages prophometrically weights)	ge-weight hted for A	ted for μ- \-law)	law,		
		Add – 45 dBm0	27	29.7	-	dB	
		Add – 40 dBm0	32	35	_	dB	
		Add 0 dBm0	36.5	41	_	dB	
Signal to total distortion Receive	STD _R	$f = 1014$ Hz (C message-weighted for μ -law, psophometrically weighted for A-law)					
		Add – 45 dBm0	22	25	_	dB	
		Add – 40 dBm0	29	32	-	dB	
		Add 0 dBm0	36.5	40	_	dB	

Power Supply Rejection Ratio

Power supply rejection ratio	PSRR	ripple: 1 kHz, 70 mVrms	_	_	_	_
Receive V _{DD}	_	at DCP/DCN at ACP/ACN	48	70	_	dB
Transmit V_{DD}	_	at IOM-2 / PCM	32	70	_	dB

Crosstalk

Same channel	_	0 dBm0, 1014 Hz				
TX or RX	_		_	_	- 75	dBm0
RX to TX	_		_	_	- 75	dBm0
Between channels	_	0 dBm0, 1014 Hz				
TX or RX to TX	_		_	_	- 75	dBm0
TX or RX to RX	_		_	_	- 75	dBm0

Preliminary

Electrical Characteristics

Figure 12 Overload Compression A/D

Electrical Characteristics

6.2.1 Gain Tracking (Receive or Transmit)

The gain deviations stay within the limits in the figures below.

Measured with a sine wave of f = 1014 Hz, the reference level is - 0 dBm0.

Figure 15 Gain Tracking Transmit

Measured with a sine wave of f = 1014 Hz, the reference level is - 0 dBm0.

Electrical Characteristics

6.2.2 Group Delay

Minimum delays occure when the SLICOFI-2x is operating with disabled Frequency Response Receive and Transmit filters including the delay through A/D and D/A converters. Specific filter programming may cause additional group delays. Absolute Group delay also depends on the programmed time slot.

Group delay deviations stay within the limits in the figures below.

Figure 16 Group Delay Distortion Receive and Transmit

Signal level 0 dBm0

Electrical Characteristics

6.3 DC Characteristics

 $T_A = -40$ °C to 85 °C, unless otherwise stated.

Table 13DC Characteristics

Parameter	Symbol	Conditions	Limit	Limit Values		Unit
			min.	typ.	max.	

Insertion Loss

A-D (see Figure 17)	PCM _{OUT}	$V_G = 0.728 \text{ dBm0}$ A-law, Bits LMSEL[3:0] = 0101 (register LMCR2) Bit LM2PCM = 1 (register LMCR1) f = 296.875 Hz	- 0.2	0	+ 0.2	dBm0
D-A (see Figure 17)	V _{AC}	$PCM_{in} = 0 \text{ dBm0}$ Bit PCM2DC = 1 (register LMCR1) Bit RNG-OFFSET[1:0] = 10 (register LMCR3) f = 296.875 Hz	5.775	5.975	6.175	dBm0

Figure 17 Insertion Loss

Preliminary

Electrical Characteristics

6.4 SLICOFI-2/-2S/-2S2 Timing Characteristics

 $T_A = -40$ °C to 85 °C, unless otherwise stated.

6.4.1 Input/Output Waveform for AC Tests

Figure 18 Waveform for AC Tests

During AC-Testing, the CMOS inputs are driven at a low level of 0.8 V and a high level of 2.0 V. The CMOS outputs are measured at 0.5 V and V_{DD} – 0.5 V respectively.

Electrical Characteristics

6.4.2 MCLK/FSC Timing

Parameter	Symbol	Limit Values			
		min.	typ.	max.	
Period MCLK ¹⁾	t _{MCLK}				ns
512 kHz ± 100 ppM		1952.93	1953.13	1953.32	
1536 kHz ± 100 ppM		650.98	651.04	651.11	
2048 kHz ± 100 ppM		488.23	488.28	488.33	
4096 kHz ± 100 ppM		244.116	244.141	244.165	
7168 kHz ± 100 ppM		139.495	139.509	139.523	
8192 kHz ± 100 ppM		122.058	122.070	122.082	
MCLK high time	<i>t</i> _{MCLKh}	$0.4 \times t_{MCLK}$	$0.5 imes t_{MCLK}$	$0.6 \times t_{MCLK}$	ns
Period FSC ¹⁾	t _{FSC}	_	125	-	μs
FSC setup time	t _{FSC_s}	10	50	-	ns
FSC hold time	t _{FSC_h}	40	50	-	ns
FSC (or PCM) jitter time		$-0.2 \times t_{MCLK}$		+ $0.2 \times t_{\text{MCLK}}$	ns

¹⁾ The MCLK frequency must be an integer multiple of the FSC frequency.

Electrical Characteristics

6.4.3 PCM Interface Timing

6.4.3.1 Single-Clocking Mode

Figure 20 PCM Interface Timing - Single-Clocking Mode

Parameter	Symbol		Limit Value	es	Unit
		min.	typ.	max.	
Period PCLK ¹⁾	t _{PCLK}	1/8192	$1/(n*64)$ with $2 \le n \le 128$	1/128	ms
PCLK high time	<i>t</i> PCLKh	$0.4 \times t_{PCLK}$	$0.5 \times t_{\text{PCLK}}$	$0.6 \times t_{\text{PCLK}}$	μs
Period FSC ¹⁾	t _{FSC}	-	125	_	μs
FSC setup time	t _{FSC_s}	10	50	-	ns
FSC hold time 1	t _{FSC_h1}	40	50	t _{FSC} - t _{PCLK} - t _{FSC_s}	ns
FSC hold time 2	t _{FSC_h2}	40	50	-	ns
DRA/B setup time	t _{DR_s}	10	50	-	ns
DRA/B hold time	t _{DR_h}	10	50	_	ns

Preliminary

Electrical Characteristics

Parameter	Symbol		/alues	Unit	
		min.	typ.	max.	
DXA/B delay time ²⁾	t _{dDX}	25	-	$t_{ m dDX_min} + 0.4[m ns/pF] \times C_{ m Load}[m pF]$	ns
DXA/B delay time to high Z	t _{dDXhz}	25	-	50	ns
TCA/B delay time on	t _{dTCon}	25	-	$t_{ m dTCon_min} + 0.4[m ns/pF] \times C_{ m Load}[m pF]$	ns
TCA/B delay time off	t _{dTCoff}	25	-	$t_{dTCoff_min} + 2 \times R_{Pullup}[k\Omega] \times C_{Load}[pF])$	ns

¹⁾ The PCLK frequency must be an integer multiple of the FSC frequency.

²⁾ All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry (C_{Load} , $R_{Pullup} > 1.5 \text{ k}\Omega$)

6.4.3.2 Double-Clocking Mode

Figure 21 PCM Interface Timing – Double-Clocking Mode

Electrical Characteristics

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Period PCLK ¹⁾	t _{PCLK}	1/8192	$1/(n*64)$ with $2 \le n \le 64$	1/256	ms
PCLK high time	t _{PCLKh}	$0.4 \times t_{PCLK}$	$0.5 \times t_{PCLK}$	$0.6 \times t_{PCLK}$	μs
Period FSC ¹⁾	t _{FSC}	-	125	-	μs
FSC setup time	t _{FSC_s}	10	50	-	ns
FSC hold time 1	t _{FSC_h1}	40	50	$t_{FSC} - t_{PCLK} - t_{FSC_s}$	ns
FSC hold time 2	t _{FSC_h2}	40	50	-	ns
DRA/B setup time	t _{DR_s}	10	50	-	ns
DRA/B hold time	t _{DR_h}	10	50	-	ns
DXA/B delay time ²⁾	t _{dDX}	25	-	$t_{ m dDX_min}$ + 0.4[ns/pF] × $C_{ m Load}[pF]$	ns
DXA/B delay time to high Z	t _{dDXhz}	25	-	50	ns
TCA/B delay time on	t _{dTCon}	25	-	$t_{ m dTCon_min}$ + 0.4[ns/pF] × $C_{ m Load}[m pF]$	ns
TCA/B delay time off	t _{dTCoff}	25	-	$t_{dTCoff_min} + 2 \times R_{Pullup}[k\Omega] \times C_{Load}[pF])$	ns

¹⁾ The PCLK frequency must be an integer multiple of the FSC frequency.

²⁾ All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry (C_{Load} , $R_{Pullup} > 1.5 \text{ k}\Omega$)

Preliminary

Electrical Characteristics

6.4.4 Microcontroller Interface Timing

Figure 22 Microcontroller Interface Timing

Parameter	Symbol	Limit Values			
		min.	typ.	max.	
Period of DCLK	t _{DCLK}	1/8192	_	-	ms
DCLK high time	t _{DCLKh}	-	$0.5 \times t_{ m DCLK}$	-	μs
CS setup time	t _{CS_s}	10	50	-	ns
CS hold time	t _{CS_h}	30	50	-	ns
DIN setup time	t _{DIN_s}	10	50	-	ns
DIN hold time	t _{DIN_h}	10	50	-	ns
DOUT delay time ¹⁾	t _{dDOUT}	30	-	$t_{dDOUT_min} + 0.4[ns/pF] \times C_{Load}[pF]$	ns
DOUT delay time to high Z	t _{dDOUThz}	30	-	50	ns

¹⁾ All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry (C_{Load})

Electrical Characteristics

6.4.5 IOM-2 Interface Timing

6.4.5.1 Single-Clocking Mode

Figure 23 IOM-2 Interface Timing – Single-Clocking Mode

Parameter	Symbol	Limit Values				
		min.	typ.	max.		
Period DCL ¹⁾	t _{DCL}	-	1/2048	-	ms	
DCL high time	t _{DCLh}	$0.4 \times t_{\text{DCL}}$	$0.5 \times t_{\text{DCL}}$	$0.6 \times t_{\text{DCL}}$	μs	
Period FSC ¹⁾	t _{FSC}	-	125	-	μs	
FSC setup time	t _{FSC_s}	10	50	-	ns	
FSC hold time 1	<i>t</i> _{FSC_h1}	40	50	$t_{\rm FSC} - t_{\rm DCL} - t_{\rm FSC_s}$	ns	
FSC hold time 2	t _{FSC_h2}	40	50	-	ns	
DD setup time	t _{DD_s}	10	50	-	ns	
DD hold time	t _{DD_h}	10	50	-	ns	
DU low time ²⁾	<i>t</i> dDU_low	25	-	t dDU_low (min) $^{+}$ 0.4[ns/pF] $\times C_{Load}$ [pF]	ns	
DU high time ²⁾	ℓ _{dDU_high}	25	_	${}^{t}_{dDU_high (min)} + 2 \times R_{pull-up}[k\Omega] \times C_{Load}[pF]$	ns	

¹⁾ The DCL frequency must be an integer multiple of the FSC frequency.

²⁾ DU low and high times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry (C_{Load} , $R_{Pullup} > 1.5 \text{ k}\Omega$)

Preliminary

Electrical Characteristics

6.4.5.2 Double-Clocking Mode

Figure 24 IOM-2 Interface Timing – Double-Clocking Mode

Parameter	Symbol	Limit Values				
		min.	typ.	max.		
Period DCL ¹⁾	t _{DCL}	-	1/4096	-	ms	
DCL high time	t _{DCLh}	$0.4 \times t_{\text{DCL}}$	$0.5 \times t_{\text{DCL}}$	$0.6 \times t_{\text{DCL}}$	μs	
Period FSC ¹⁾	t _{FSC}	-	125	-	μs	
FSC setup time	t _{FSC_s}	10	50	-	ns	
FSC hold time 1	t _{FSC_h1}	40	50	$t_{\rm FSC} - t_{\rm DCL} - t_{\rm FSC_s}$	ns	
FSC hold time 2	t _{FSC_h2}	40	50	-	ns	
DD setup time	t _{DD_s}	10	50	-	ns	
DD hold time	t _{DD_h}	10	50	-	ns	
DU low time ²⁾	t _{dDU_low}	25	-	$^{t}_{dDU_low (min)} + 0.4[ns/pF] \times C_{Load}[pF]$	ns	
DU high time ²⁾	<i>t</i> dDU_high	25	-	$t_{dDU_high (min)} + 2 \times R_{pull-up}[k\Omega] \times C_{Load}[pF]$	ns	

¹⁾ The DCL frequency must be an integer multiple of the FSC frequency.

²⁾ DU low and high times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry (C_{Load} , $R_{Pullup} > 1.5 \text{ k}\Omega$)

Preliminary

Package Outlines

7 Package Outlines

Dimensions in mm

Glossary

8 Glossary

8.1	List of Abbreviations
ACTL	Active with V_{BATL} and V_{BGND}
ACTH	Active with $V_{\sf BATH}$ and $V_{\sf BGND}$
ACTR	Active with $V_{\sf BATR}$ and $V_{\sf GND}$ or $V_{\sf HR}$ and $V_{\sf BATH}$
ADC	Analog Digital Converter
AR	Attenuation Receive
AX	Attenuation Transmit
BP	Band Pass
СМР	Compander
Codec	Coder Decoder
COP	Coefficient Operation
CRAM	Coefficient RAM
DAC	Digital Analog Converter
DSP	Digital Signal Processor
DUP	Data Upstream Persistence Counter
DuSLIC	Dual Channel Subscriber Line Interface Concept
EXP	Expander
FRR	Frequency Response Receive Filter
FRX	Frequency Response Transmit Filter
LSSGR	Local area transport access Switching System Generic Requirements
РСМ	Pulse Code Modulation
PDH	Power Down High Impedance

Glossary

PDRHL	Power Down Load Resistive on $V_{\sf BATH}$ and $V_{\sf BGND}$
PDRRL	Power Down Load Resisitve on V_{BATR} and V_{BGND}
PDRH	Power Down Resistive on $V_{\sf BATH}$ and $V_{\sf BGND}$
PDRR	Power Down Resistive on $V_{\sf BATR}$ and $V_{\sf BGN}$
POFI	Post Filter
PREFI	Antialiasing Pre Filter
RECT	Rectifier (Testloops, Levelmetering)
SLIC	Subscriber Line Interface Circuit (synonym for all versions)
SLIC-S/-S2	Subscriber Line Interface Circuit Standard Feature Set PEB 4264/-2
SLIC-E/-E2	Subscriber Line Interface Circuit Enhanced Feature Set PEB 4265/-2
SLIC-P	Subscriber Line Interface Circuit Enhanced Power Management PEB 4266
SLICOFI-2x	Dual Channel Subscriber Line Interface Codec Filter (synonym for all versions)
SLICOFI-2	Dual Channel Subscriber Line Interface Codec Filter PEB 3265
SLICOFI-2S/- 2S2	Dual Channel Subscriber Line Interface Codec Filter PEB 3264/-2
SOP	Status Operation
TG	Tone Generator
TH	Transhybrid Balancing
THFIX	Transhybrid Balancing Filter (fixed)
TS	Time Slot
ТТХ	Teletax

9 Index

A

Active 23 Active High 18 Active Low 18 Active Ring 18 Active with HIR 18 Active with HIT 18 Active with Metering 18

В

Battery feed 3, 4, 11

С

Caller ID 3, 12, 17 Coding 11

D

DTMF 12 DTMF decoder 3, 12 DTMF generator 3, 4, 12 DuSLICOS 12

Ε

External Ringing 9

F

Frequency response 11, 36 FSK 12

Η

Hybrid 11 Hybrid balance 11

I

Impedance matching 11 IOM-2 interface 7

L

Line Echo Cancellation 12

Μ

Message waiting 3 Metering 3, 4

0

Overvoltage protection 11

Ρ

PCM interface 8, 45 Polarity Reversal 3, 4 Power Down High Impedance 18, 22 Power Down Resistive 18, 20, 21, 22, 23 Power Management 3, 4

R

Receive gain 11 Ring Pause 19 Ringing 11, 18

S

Signaling 11, 15 Sleep 18, 31 SLIC Interface 20, 21 Supervision 11

Т

Teletax Metering 12 Transmit gain 11, 36 TTX 11

U

Universal Tone Detection 12

Index

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results. Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional

success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com